当前位置: 答案解析 > 综合题
  • 1. (2021·泰安) 如图1,O为半圆的圆心,CD为半圆上的两点,且 .连接AC并延长,与BD的延长线相交于点E

    1. (1) 求证:CDED
    2. (2) ADOCBC分别交于点FH

      ①若CFCH , 如图2,求证:CFAFFOAH

      ②若圆的半径为2,BD=1,如图3,求AC的值.

举一反三换一批
  • 1. (2018·通辽) 如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于 AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为1

  • 2. (2021九上·慈溪期末) 如图1是2002年发行的中国纪念邮票,其图案是三国时期吴国数学家赵爽在注释《周髀算经》中所给勾股定理的证明.同学们在探索勾股定理时还出现了许多利用正方形证明勾股定理的方法.如图2,正方形ABCD是由四个全等的直角三角形和一个正方形EFGH拼成;正方形EFGH是由与上述四个直角三角形全等的三角形和正方形IJKL拼成;正方形ABCD,EFGH,IJKL的面积分别为S1,S1,S3分别连结AK,BL,CI,DJ并延长构成四边形MNOP,它的面积为m.①请用等式表示S1,S1,S3之间的数量关系为:1;②m=2(用含S1 , S3的代数式表示m)

  • 3. (2020·芜湖模拟)            
    1. (1) 问题发现

      图片_x0020_1224455779

      如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:

      的值为1

      ②∠AMB的度数为2

    2. (2) 类比探究

      如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断 的值及∠AMB的度数,并说明理由;

    3. (3) 拓展延伸

      在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB= ,请直接写出当点C与点M重合时AC的长.

微信扫码预览、分享更方便