当前位置: 答案解析 > 综合题
  • 1. (2020九上·朝阳期末) 在平面直角坐标系xOy中,⊙O的半径为2,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,使线段AB的一个端点落在⊙O上,其他部分不在⊙O外,点A,B对应点分别为点A´,B´,线段A A´长度的最大值称为线段AB到⊙O的“极大距离”,记为 d(AB,⊙O).

    图片_x0020_1557306141

    1. (1) 若点A(-4,0).

      ①当点B为(-3,0),如图所示,平移线段AB,在点P1(-2,0),P2(-1,0),P3(1,0),P4(2,0)中,连接点A与点________ 的线段的长度为d(AB,⊙O);

      ②当点B为(-4,1),求线段AB到⊙O的“极大距离”所对应的点A´的坐标:________;

    2. (2) 若点A(-4,4),d(AB,⊙O)的取值范围是________.
举一反三换一批
  • 1. (2020九上·湖北月考) 定义新运算®:对于任意实数a、b都有:a®b=a2+ab,如果3®4=32+3×4=9+12=21,那么方程x®2=0的解为________.
  • 2. (2021九下·重庆开学考) 阅读理解:

    若一个三位数 ,且a,b,c均为整数), ,则称这个三位数m为“牛数”.比如:341, ,则341为“牛数”.将三位数m的个位与百位交换位置得到新的三位数记为 ,并记 .

    1. (1) 判断453是否为“牛数”,并说明理由;
    2. (2) 已知m为“牛数”,当 能被12整除时,求 的最大值.
  • 3. (2019·广西模拟) 如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点0为圆心作63°,使63°经过点A和点D.

    1. (1) 判断直线BC与Q0的位置关系,并说明理由;
    2. (2) 若AC=3,∠B=30°.

      ①求⊙O的半径;

      ②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和 )