当前位置: 答案解析 > 单选题
举一反三换一批
  • 1. (2017九下·盐城期中) 如图,抛物线 与直线 交于A、B两点,其中A在y轴上,点B的横坐标为4,P为抛物线上一动点,过点P作PC垂直于AB,垂足为C.

    1. (1) 求抛物线的解析式;
    2. (2) 若点P在直线AB上方的抛物线上,设P的横坐标为m,用m的代数式表示线段PC的长,并求出线段PC的最大值及此时点P的坐标.
    3. (3) 若点P是抛物线上任意一点,且满足0°<∠PAB≤45°。请直接写出:

      ①点P的横坐标的取值范围;

      ②纵坐标为整数点P为“巧点”,“巧点”的个数。

  • 2. (2017九下·梁子湖期中) 如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC的边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则y与x函数关系的图象大致是(   )

    A . B . C . D .
  • 3. (2014·柳州) 已知二次函数图象的顶点坐标为(0,1),且过点(﹣1, ),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1 , y1),B(x2 , y2).

    (注:在解题过程中,你也可以阅读后面的材料)

    附:阅读材料

       任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.

       即:设一元二次方程ax2+bx+c=0的两根为x1 , x2

       则:x1+x2=﹣ ,x1•x2=

       能灵活运用这种关系,有时可以使解题更为简单.

       例:不解方程,求方程x2﹣3x=15两根的和与积.

       解:原方程变为:x2﹣3x﹣15=0

    ∵一元二次方程的根与系数有关系:x1+x2=﹣ ,x1•x2=

    ∴原方程两根之和=﹣ =3,两根之积= =﹣15.

    1. (1) 求该二次函数的解析式.
    2. (2) 对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)
    3. (3) 求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.