当前位置:手动组卷 /高中生物学 /按章节
最新上传 最多使用
  • 1. (2023高一下·昭通月考) 学习小组选用苏丹Ⅲ染液,使用显微镜检测和观察花生子叶中的脂肪,下列相关叙述不正确的是(    )
    A . 原理:脂肪可以被苏丹Ⅲ染液染成橘黄色 B . 步骤:切取子叶薄片→苏丹Ⅲ染液染色→洗去浮色→制片→观察 C . 现象:花生子叶细胞中有被染成橘黄色的颗粒 D . 结论:脂肪是花生子叶细胞中含量最多的化合物
  • 1. (2022高一上·高县期中) 细胞是生物体的基本结构和功能单位。下列有关细胞的叙述,正确的是(    )
    A . 原核细胞结构简单,所以不具有多样性 B . 原核细胞与真核细胞之间不具有统一性 C . 除病毒外,生物体都是由细胞构成的 D . 新细胞是从老细胞的细胞核中产生的
  • 1. (2021高一下·丽江期末) 下列有关遗传物质的叙述,正确的是(   )
    A . 人体细胞核内的遗传物质是DNA,而细胞质内的遗传物质是RNA B . 真核细胞内的DNA是遗传物质,原核细胞内的RNA是遗传物质 C . 生物细胞中DNA较多,所以DNA是主要的遗传物质 D . 病毒的遗传物质是DNA或RNA
  • 1. (2024高三下·武汉开学考) 根据光合作用中CO2的固定方式不同,可将植物分为C3植物和C4植物等类型。在适宜温度、水分和一定的光照强度下,测得两类植物CO2的吸收速率随大气CO2浓度变化的情况,绘制成如图所示的曲线(CO2补偿点时的光合速率与呼吸速率相等)。下列有关叙述正确的是(    )

    A . 在大气CO2浓度达到补偿点后,C3植物和C4植物开始进行光合作用 B . 在大气CO2浓度达到饱和点后,限制C4植物光合速率的主要环境因素是光照强度 C . 图中两条曲线的交叉点代表此时C3植物和C4植物光合作用制造的有机物一样多 D . 干旱会导致气孔开度减小,在同等程度干旱条件下,C3植物比C4植物生长得会更好
  • 1. (2023高一下·滕州期中) 某生物的基因型为AaBb,已知Aa和Bb两对等位基因分别位于两对同源染色体上,那么该生物体中,在某个细胞分裂的后期,基因的走向不可能是(    )
    A . A与B走向一极,a与b走向另一极 B . A与b走向一极,a与B走向另一极 C . A与a走向一极,B与b走向另一极 D . 走向两极的均为A、a、B、b
  • 1.  为提高培育转基因植株的成功率, 所选择的植物受体需具有较强的再生能力和遗传稳定性。下列关于植物转基因受体的叙述错误的是( )
    A . 对受体细胞遗传稳定性的早期检测, 可通过观察细胞内细胞核形态是否改变判断 B . 对受体细胞遗传稳定性的早期检测, 可通过分析染色体组成是否改变进行判断 C . 受体细胞失去特有的形态和功能, 进而形成愈伤组织, 该过程属于再分化 D . 受体细胞变成完整植株, 体现了受体细胞具有全能性
  • 1.  全球糖尿病患者高达数亿, 自1921年班廷提取胰岛素并用于治疗糖尿病以来, 胰岛素拯救了无数糖尿病患者的生命,人类生产胰岛素的技术也在不断提高。
    1. (1) 在人类胰岛B细胞中,胰岛素基因最初表达的是由 110个氨基酸残基构成的链状胰岛素原前体(下图1,图中aa代表氨基酸), 肽链由 N端(游离-NH2端) 的S区引导进入,随后S区被切去。肽链的氨基酸之间通过形成多个氢键等, 从而使得肽链能,形成有一定空间结构的胰岛素原(B-C-A)。
    2. (2) 胰岛素原借助囊泡被转运至高尔基体。当机体接到胰岛素需求指令后,高尔基体内的酶再切除胰岛素原中的C区,C区被切除后胰岛素原的结构进一步改变,最终形成A 区与 B区相连的活性胰岛素。上述S区、C区被酶切除的过程就是(氢键/二硫键/肽键) 水解的过程。胰岛素是蛋白质,三个二硫键正确搭配的意义是
    3. (3) 活性胰岛素仍然要借助于囊泡, 才能安全高效地分泌到细胞外, 分泌到细胞外的过程依赖于生物膜的,并消耗能量。胰岛素的功能主要指胰岛素促进,从而增加血糖去向, 降低血糖浓度。
    4. (4) 鉴于活性胰岛素仅含 A区和B区, 专家以大肠杆菌为受体,设计的人胰岛素基因工程生产技术路线(AB 表达法) 是: 化学合成目的基因→目的基因分别与质粒连接→构建成pIA1 和pIB1质粒→pIA1和pIB1质粒分别导入大肠杆菌受体→表达人胰岛素的A区和B区→A区与B区混合形成二硫键→活性胰岛素。AB表达法中目的基因的具体名称是。因一些胰岛素蛋白形成了错误的二硫键,而没有生物活性,由此法生产重组人胰岛素效益低、成本高。专家进一步研究认为,在胰岛B细胞内C区可能起到组装A区和B区的“脚手架”作用。为验证此假说,他们采用酶以人胰岛 B 细胞的 mRNA为初始模板合成DNA,再扩增DNA 获得目的基因,然后制备B-C-A多肽链,最后再用酶模拟细胞内的过程将C区切除(图2) 。由此(BCA表达法)生产成本大幅度降低。
  • 1.   水稻和甘蔗是广西种植最多的两种作物, 农作物的产量主要决定于其光合作用的速率。
    1. (1) Rubisco 是水稻和甘蔗等高等植物唯一催化 CO2固定形成C3的酶,Rubisco 通常存在于叶绿体的中, Rubisco催化的底物是CO2
    2. (2) 下图表示甘蔗叶片结构和光合作用过程。与水稻相比,甘蔗叶肉细胞叶绿体中特有 PEP 羧化酶(简称 PEPC) , PEPC 对 CO2的亲和力约是 Rubisco 的 60倍。所以, PEPC能催化甘蔗利用极低浓度的CO2不断生成 C4(苹果酸) , C4不断进入维管束鞘细胞分解进而不断释放出 CO2。这样在高温、气孔开度导致叶片内CO2浓度极低的情况下, 甘蔗靠PEPC“CO2泵”的作用实现了高效的光合作用。为证明甘蔗光合作用的特点,向密闭环境中生长的甘蔗提供14C标记的14CO2进行光合作用,短时间内14C会出现在和C3中。
    3. (3) 甘蔗叶片维管束鞘细胞含有的叶绿体(如图)没有(填结构) , 这些叶绿体只能进行暗反应。叶片中CO2在叶肉细胞间通过细胞膜的转移方式是,且只需要通过细胞膜, 而 C4从叶肉细胞到维管束鞘细胞的转移还要通过(填结构)。

    4. (4) 水稻维管束鞘细胞无叶绿体, Rubisco 的低效导致光合作用速率低,限制了产量。科学家一直在尝试攻克此难关以解决粮食问题。根据上述甘蔗的情况,尝试提出提高水稻光合作用效率的一个思路
  • 1.  蛋白质的分泌是细胞间信息传递的重要方式。分泌蛋白的新生多肽含有信号肽,在翻译过程中被识别进入内质网进行加工、修饰,之后被运输到高尔基体经过进一步的加工,最终抵达细胞质膜并被释放到细胞外,这一过程被称为蛋白质分泌途径。以下关于分泌机制的表述不正确的是(  )
    A . 分泌蛋白的产生过程大部分需要翻译和进入内质网的过程同时进行 B . 内质网和高尔基体之间的运输需要通过囊泡完成 C . 分泌过程中,信号肽序列也可能位于新生多肽N-端以外的其他区段 D . 分泌蛋白的合成与分泌过程所需能量主要由线粒体提供
  • 1.  碘是甲状腺激素合成的重要原料。甲状腺滤泡上皮细胞膜上的钠-钾泵可维持细胞内外的Na+浓度梯度,钠-碘同向转运体借助Na+的浓度梯度将碘转运进甲状腺滤泡上皮细胞,碘被甲状腺过氧化物酶活化后,进入滤泡腔参与甲状腺激素的合成。下列说法错误的是(  )
    A . 长期缺碘可导致机体的促甲状腺激素分泌增加 B . 使用促甲状腺激素受体阻断剂可导致甲状腺激素分泌增加 C . 抑制甲状腺过氧化物酶的活性,可使甲状腺激素合成减少 D . 用钠—钾泵抑制剂处理甲状腺滤泡上皮细胞,会使其摄碘能力减弱
上一页 1 2 3 4 5 下一页 共1000页