当前位置: 答案解析 > 单选题
  • 1. (2019九上·湖州月考) 已知二次函数 的y与x的部分对应值如表:

    x

    −1

    0

    2

    3

    4

    y

    5

    0

    −4

    −3

    0

    下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A( ,2),B( ,3)是抛物线上两点,则 ,其中正确的个数是(   )

    A . 2 B . 3 C . 4 D . 5
举一反三换一批
  • 1. 点 均在二次函数 的图象上,则 的大小关系是(         )
    A . B . C . D .
  • 2. 二次函数y=x2-2x-3的图象如图所示,当y<0时,自变量 x的取值范围为  (    )

    A . -1<x<3 B . x<-1 C . x>3 D . x<-1或x>3
  • 3. 已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.

    (1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;
    (2)说出抛物线y=x2-2x-3可由抛物线y=x2如何平移得到?
    (3)求四边形OCDB的面积.

  • 4. 如图,抛物线yax )(x+3)交x轴于点AB , 交y轴于点C , tan∠CAO

    图片_x0020_100031

    1. (1) 求a值;
    2. (2) 点P为第一象限内抛物线上一点,点P的横坐标为t , 连接PAPC , 设△PAC的面积为S , 求St之间的关系式;
    3. (3) 在(2)的条件下,点Q在第一象限内的抛物线上(点Q在点P的上方),过点PPEAB , 垂足为E , 点D在线段AQ上,点F在线段AO上连接EDDFDEAP于点G , 若∠QDF+∠QDE=180°,∠DFA+∠AED=90°,PGPEPGEF=3:2,求点P的坐标.
  • 5. 若 抛物线 x轴只有一个交点,则m的值为(       )
    A . - 6 B . 6 C . 3 D . 9